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CPS Model-Based Development 
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Model in the Loop
MiL

Software in the Loop
SiL

Hardware in the Loop
HiL

Function modeling 
(Matlab/Simulink)

• Controller
• Plant/Environment

Architecture modeling 
(C-Code/SysML)

• Real-time analysis
• Integration

Deployment
(embedded-C)

• Testing (Expensive)



Model Testing
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Do we find an error by 
testing models?

Requirements

OraclesModels

Design



Fundamental Questions
• What are the useful and realistic models of CPSs?

• How to specify test oracles to enable effective testing of 
system requirements and design?

• How to design scalable testing techniques?

• Test case generation

• Test case selection

• Fault localization
6
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CPS Models

• have dynamic behaviors

• are executable

• are hybrid – capture both discrete (algorithms) and 
continuous (physical dynamics) computations

• exhibit uncertainty e.g., about the environment 
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Open Loop Controllers
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Closed Loop Controllers
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Autonomous Controllers
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CPS Test Oracles
• System outputs are signals

• Engineers inspect changes in outputs over continuous time 
periods

• Test oracles

• may be heuristic or partial

• are often quantitative and not
binary

• might be effort-intensive or difficult 
to automate
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Anti Patterns– Partial Oracles

• Instability 

• Growth to infinity

• Discontinuity 
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Application Specific Oracles
• A reference signal + error margin

• (Sequences of) Signal features

• Temporal properties: ``The system response should occur within 
32ms’’
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CPS Testing Challenges
• Test input space is large and multi-dimensional

• Model executions are time consuming

• Fault localization is difficult 

• Limited time budget for testing

• Test oracles are expensive

• Running the test cases on HiL is expensive
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Our Solutions
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Challenges Our solution
Test input space is large Metaheuristic search to identify worst 

case/critical behaviors
Simulation takes time Surrogate models to predict the

simulation outcome without running 
simulations

Fault localization is 
difficult

Classification techniques to  explain
system failures

Expensive HiL Testing Test case prioritization using multi-
objective search 



Example Projects



Testing Advanced Driver 
Assistance Systems 
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Advanced Driver Assistance 
Systems (ADAS)

Decisions are made over time based on sensor data
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Testing Advanced Driver Assistance 
Systems (self-driving cars)
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Models -- A simulator based on 
Physical/Mathematical models

Oracles -- description of crashes

• Test generation based on meta-heuristic search
• Surrogate modeling to speed up search
• Classification to help with fault localization
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Automated Emergency Braking 
System (AEB)

20

“Brake-request” 
when braking is needed 
to avoid collisions

Decision making

Vision
(Camera)

Sensor

Brake 
Controller

Objects’ 
position/speed



Physics-Based Simulations
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AEB Critical Behavior -- Oracle

Example: 

CB: “AEB detects a pedestrian in front of the car with a high degree 
of certainty, but an accident happens where the car hits the 
pedestrian with a relatively high speed”
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- simulationTime: 
Real
- timeStep: Real

Test Scenario

- v0: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- v0: Real

Pedestrian

- simulationTime: 
Real
- timeStep: Real

Test Scenario

PeVi

1
1

1
1

«positioned»
Dynamic
Object

- v0: Real
Vehicle

- x0: Real
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- θ: Real
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- y: Real
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*

1
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- state: Boolean
Collision

PeVi

- state: Boolean
Detection
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Output 
Trajectory

Input/Output Specification
Static inputs
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Outputs

- intensity: Real
SceneLight

1
- weatherType: 
Condition

Weather
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Generating Critical Test Scenarios 
via Metaheuristic Search
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Black-Box Search-based Testing
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Test input generation

Evaluating test inputs

- Select best tests
- Generate new tests (genetic operators) 

Input data ranges/dependencies + Simulator +  Fitness functions 
defined based on Oracles 

(candidate) 
test inputs

- Simulate every (candidate) test
- Compute fitness functions

Fitness
values

Test cases revealing worst case system behaviors



An example critical scenario
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Improving Search Time Performance
via Surrogate (Prediction) Models
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Improving Time Performance

• Individual simulations take on average around 1min

• It takes 8 hours to run our search-based test generation 
(≈ 500 simulations)

èWe use surrogate modeling to improve the search

• Goal: Predict fitness based on dynamic variables 

• Neural networks
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Surrogate Modeling
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Test input generation

Evaluating test inputs

- Select best tests
- Generate new tests (genetic operators) 

Input data ranges/dependencies + Simulator +  Fitness functions 
defined based on Oracles 

(candidate) 
test inputs

- Simulate every (candidate) test
- Compute fitness functions

Fitness
values

Test cases revealing worst case system behaviors

Uses prediction values & 
prediction errors to run 
simulations only for the 
solutions likely to be 
selected



Results – Surrogate Modeling
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Guiding Search 
via Classification Models

31



Search Guided by Classification
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Test input generation

Evaluating test inputs

Build a classification tree
Select/generate tests in the fittest regions
Apply genetic operators (Optional)

Input data ranges/dependencies + Simulator +  Fitness functions 
defined based on Oracles 

(candidate) 
test inputs

- Simulate every (candidate) test
- Compute fitness functions

Fitness
values

Test cases revealing worst case system behaviors  +
A characterization of critical input regions



Initial Classification Model

33

All Test Scenarios 
Count                1200

non-Critical

%20 - %80

Count                 564
non-Critical
%42 - %58

Road topology 
( CR=[10—40] )

Count                 636
non-Critical

%2 - %98

Road topology 
(CR=5, Straight, 
 RH=[4—12] )

Count                 412
Critical

%51 - %49

Count                 152
non-Critical

%16 - %84

P.θ < 218.6 P.θ >= 218.6 

Count                 230
Critical

%68 - %32

Count                 182
non-Critical
%28 - %72

P.v0 >=2.2  P.v0 < 2.2



Refined Classification Model
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Count                3367
non-Critical

%42 - %58

Count                1169
non-Critical
%12 - %88

Count                1860
Critical

%53 - %47

Count                 338
Critical

%83 - %17

Count                1438
Critical

%58 - %42

Count                 422
non-Critical
%36 - %64

P.x0 < 37.4  P.x0 >= 37.4  

All Test Scenarios 

P.θ >= 232.5 P.θ < 232.5 

P.x0 >= 33  P.x0 < 33

Count                 553
Critical

%71 - %29

Count                 885
non-Critical

%49 - %51

P.θ < 185.6 P.θ >= 185.6 

Count                 548
Critical

%63 - %37

Count                 337
non-Critical
%27 - %73

P.y0 >= 57.7  P.y0 < 57.7  

Count                2198
Critical

%57 - %43

Road topology 
(Straight ,CR=[5—40] )

Road topology 
(CR=[5—40] )

Road topology 
(Straight ,
CR=[5—40] )

Road topology 
(CR=[5—40] )

^

^

^

^

^Road topology 
(Straight ,CR=[5—40],
RH=[4—12])

^ Road topology 
(Straight ,
CR=[5—40] )

Road topology 
(CR=[5—40] )

^

Road topology 
(CR=[5—40] )
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Outputs of Our Approach
• Failure Detection 

• (Search + Classification) generates 78% more distinct, critical 
test scenarios compared to a baseline search algorithm

• Failure Explanation

• A characterization of the input space showing under what input 
conditions the system is likely to fail

• Visualized by diagrams or regression trees
35



Failure Explanation
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Usefulness

The characterizations of the different critical regions can 

help with:

(1) Debugging the system or the simulator

(2) Identifying hardware changes to increase ADAS 

safety

(3) Identifying proper warnings to drivers
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Other Project Examples
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Automotive Systems 

• Testing controller implemented in Simulink

• Analysis of CPU time usage in ECU software

• Fault localisation in Simulink models

39



Model Testing Satellite Systems 
• Control system

• MiL/SiL testing

• Data communication system

• Test case prioritization
for HiL

40



Conclusions



Model Testing
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Do we find an error by 
testing models?

Requirements

OracleModels

Design

- Search
- Prediction models
- Classification models



Model Checking
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Do models satisfy 
formal properties?

Requirements

Formal PropertiesModels

Design

- Symbolic techniques
- Exhaustive search via
SAT/SMT solvers



Related Work: Model Checking
• Incompatibility issues with CPS models

• Continuous mathematical models, e.g., differential 
equations

• Library functions in binary code

• Non-linear behavior

• Complex mathematical operators

• Saturation of actuators and sensors

• Reliance on measured data
44



Related Work: Model Checking

• Unrealistic assumptions about CPS test oracles

• Discrete/exact/complete/binary/automatable

• Focus on structural coverage

• Scalability
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Search-Based Solutions
• Are Versatile

• Decrease modeling requirements

• Relax assumptions on test oracles

• Are scalable, e.g., easy to parallelize

• Can be combined with:  Machine learning; Statistics; Solvers, e.g., 
SMT, CP

• But,

• are context-dependent

• require massive empirical studies
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Future Work 
• Model testing solutions in other CPS contexts

• Heterogeneous modeling and co-simulation

• Modeling dynamic properties and risk

• Uncertainty modeling enabling probabilistic test oracles

• Executable model at a proper level of precision for testing 
purposes

• Systematic ways to build fitness functions for oracles
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Results
• The test scenarios by our search-based approach helped 

engineers identify several critical behaviors

• The critical test scenarios are available at: 

https://sites.google.com/site/testingpevi

• Under tight time budget, our search algorithm with surrogate 
models is more accurate and safer compared to the baseline 
search algorithm

• Our classification guided search generates 78% more distinct, 
critical test scenarios compared to the baseline search algorithm
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Part II. Model Testing Satellite 
Systems   
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Synthesizer
Spectrum analyzer

Power meter

Other instruments Ground station

Satellite

IOT system



Test Case Prioritization (HiL)

• Problem

• Test case prioritization

• Context

• System validation and acceptance 
testing of CPS

56

Search space: exponential growth
E.g., two test cases: a, b
Possible test suites: (a), (b), (a,b), (b,a)

Black box testing



Results – Worst Runs
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