
.lu
software verification & validation
VVS

Automated Testing of Cyber-
Physical Systems

Shiva Nejati
SnT Centre/University of Luxembourg

Huawei Workshop

December 15, 2017

Acknowledgements

• Lionel Briand

• Raja Ben Abdessalem

• Reza Matinnejad

• Industry partners: IEE, SES and Delphi

2

Raja

Lionel

Reza

Cyber Physical Systems

3

Cyber Space

Physical
Sensing

Actuation
Information

Networks

Object
Domain

Real Space

Model-Based Development

CPS Model-Based Development

4

Model in the Loop
MiL

Software in the Loop
SiL

Hardware in the Loop
HiL

Function modeling
(Matlab/Simulink)

• Controller
• Plant/Environment

Architecture modeling
(C-Code/SysML)

• Real-time analysis
• Integration

Deployment
(embedded-C)

• Testing (Expensive)

Model Testing

5

Do we find an error by
testing models?

Requirements

OraclesModels

Design

Fundamental Questions
• What are the useful and realistic models of CPSs?

• How to specify test oracles to enable effective testing of
system requirements and design?

• How to design scalable testing techniques?

• Test case generation

• Test case selection

• Fault localization
6

ARTIFICIAL

INTELLIGENCE

CPS Models

• have dynamic behaviors

• are executable

• are hybrid – capture both discrete (algorithms) and
continuous (physical dynamics) computations

• exhibit uncertainty e.g., about the environment

7

Open Loop Controllers

8

Controller

Actuator

Reference
Inputs

Closed Loop Controllers

9

Plant

Controller

Actuator Sensor

Disturbances

Controllers + Plants

Reference
Inputs

Autonomous Controllers

10

Sensor

Controller

Actuator Decision

Plant

Disturbances

Sensors/
Camera

Environment

Controllers + Plants + Decision

CPS Test Oracles
• System outputs are signals

• Engineers inspect changes in outputs over continuous time
periods

• Test oracles

• may be heuristic or partial

• are often quantitative and not
binary

• might be effort-intensive or difficult
to automate

11

Anti Patterns– Partial Oracles

• Instability

• Growth to infinity

• Discontinuity

12

0.0 1.0 2.00.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

Time Time

0.0

0.25

0.50

0.75

1.0

0.0 1.0 2.00.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

Time Time

0.0

0.25

0.50

0.75

1.00 1.0 2.0 0 1.0 2.0

0

4.0

-4.0

-8.0

0

1.5

-1.5

1.0

-1.0

0.5

-0.5

2.0

-2.0

-6.0

10
5

10
6

Time Time

Application Specific Oracles
• A reference signal + error margin

• (Sequences of) Signal features

• Temporal properties: ``The system response should occur within
32ms’’

13

Time

Power
level Reference signal

k.�t0 k.�t0

D E

CPS Testing Challenges
• Test input space is large and multi-dimensional

• Model executions are time consuming

• Fault localization is difficult

• Limited time budget for testing

• Test oracles are expensive

• Running the test cases on HiL is expensive

14

Our Solutions

15

Challenges Our solution
Test input space is large Metaheuristic search to identify worst

case/critical behaviors
Simulation takes time Surrogate models to predict the

simulation outcome without running
simulations

Fault localization is
difficult

Classification techniques to explain
system failures

Expensive HiL Testing Test case prioritization using multi-
objective search

Example Projects

Testing Advanced Driver
Assistance Systems

17

Advanced Driver Assistance
Systems (ADAS)

Decisions are made over time based on sensor data

18

Sensor

Controller

Actuator Decision

Plant

Disturbances

Sensors/Ca
mera

Environment

Testing Advanced Driver Assistance
Systems (self-driving cars)

19

Models -- A simulator based on
Physical/Mathematical models

Oracles -- description of crashes

• Test generation based on meta-heuristic search
• Surrogate modeling to speed up search
• Classification to help with fault localization

20

Automated Emergency Braking
System (AEB)

20

“Brake-request”
when braking is needed
to avoid collisions

Decision making

Vision
(Camera)

Sensor

Brake
Controller

Objects’
position/speed

Physics-Based Simulations

21

AEB Critical Behavior -- Oracle

Example:

CB: “AEB detects a pedestrian in front of the car with a high degree
of certainty, but an accident happens where the car hits the
pedestrian with a relatively high speed”

22

23

- simulationTime:
Real
- timeStep: Real

Test Scenario

- v0: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- v0: Real

Pedestrian

- simulationTime:
Real
- timeStep: Real

Test Scenario

PeVi

1
1

1
1

«positioned»
Dynamic
Object

- v0: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- v0: Real

Pedestrian

- x: Real
- y: Real

Position

*

1
1

- state: Boolean
Collision

PeVi

- state: Boolean
Detection

11

1
1

- AWA

Output
Trajectory

Input/Output Specification
Static inputs
Dynamic inputs
Outputs

- intensity: Real
SceneLight

1
- weatherType:
Condition

Weather

- fog
- rain
- snow
- normal

«enumeration»
Condition

- field of view:
Real

Camera
Sensor

RoadSide
Object

- roadType: RT
Road

1 - curved
- straight
- ramped

«enumeration»
RT

1

*

1

Parked
Cars

Trees
- simulationTime:
Real
- timeStep: Real

Test Scenario

«uses»
1 1 PeVi

Generating Critical Test Scenarios
via Metaheuristic Search

24

Black-Box Search-based Testing

25

Test input generation

Evaluating test inputs

- Select best tests
- Generate new tests (genetic operators)

Input data ranges/dependencies + Simulator + Fitness functions
defined based on Oracles

(candidate)
test inputs

- Simulate every (candidate) test
- Compute fitness functions

Fitness
values

Test cases revealing worst case system behaviors

An example critical scenario

26

Improving Search Time Performance
via Surrogate (Prediction) Models

27

Improving Time Performance

• Individual simulations take on average around 1min

• It takes 8 hours to run our search-based test generation
(≈ 500 simulations)

èWe use surrogate modeling to improve the search

• Goal: Predict fitness based on dynamic variables

• Neural networks

28

Surrogate Modeling

29

Test input generation

Evaluating test inputs

- Select best tests
- Generate new tests (genetic operators)

Input data ranges/dependencies + Simulator + Fitness functions
defined based on Oracles

(candidate)
test inputs

- Simulate every (candidate) test
- Compute fitness functions

Fitness
values

Test cases revealing worst case system behaviors

Uses prediction values &
prediction errors to run
simulations only for the
solutions likely to be
selected

Results – Surrogate Modeling

30

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(a) Comparing HV values obtained
by NSGAII and NSGAII-SM

NSGAII (mean)
NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)
50 100 15010

(b) Comparing HV values obtained
by RS and NSGAII-SM

HV

RS (mean)
NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(c) HV values for worst runs of NSGAII,
NSGAII-SM and RS

RS

NSGAII-SM
NSGAII

Guiding Search
via Classification Models

31

Search Guided by Classification

32

Test input generation

Evaluating test inputs

Build a classification tree
Select/generate tests in the fittest regions
Apply genetic operators (Optional)

Input data ranges/dependencies + Simulator + Fitness functions
defined based on Oracles

(candidate)
test inputs

- Simulate every (candidate) test
- Compute fitness functions

Fitness
values

Test cases revealing worst case system behaviors +
A characterization of critical input regions

Initial Classification Model

33

All Test Scenarios
Count 1200

non-Critical

%20 - %80

Count 564
non-Critical
%42 - %58

Road topology
(CR=[10—40])

Count 636
non-Critical

%2 - %98

Road topology
(CR=5, Straight,
 RH=[4—12])

Count 412
Critical

%51 - %49

Count 152
non-Critical

%16 - %84

P.θ < 218.6 P.θ >= 218.6

Count 230
Critical

%68 - %32

Count 182
non-Critical
%28 - %72

P.v0 >=2.2 P.v0 < 2.2

Refined Classification Model

34

Count 3367
non-Critical

%42 - %58

Count 1169
non-Critical
%12 - %88

Count 1860
Critical

%53 - %47

Count 338
Critical

%83 - %17

Count 1438
Critical

%58 - %42

Count 422
non-Critical
%36 - %64

P.x0 < 37.4 P.x0 >= 37.4

All Test Scenarios

P.θ >= 232.5 P.θ < 232.5

P.x0 >= 33 P.x0 < 33

Count 553
Critical

%71 - %29

Count 885
non-Critical

%49 - %51

P.θ < 185.6 P.θ >= 185.6

Count 548
Critical

%63 - %37

Count 337
non-Critical
%27 - %73

P.y0 >= 57.7 P.y0 < 57.7

Count 2198
Critical

%57 - %43

Road topology
(Straight ,CR=[5—40])

Road topology
(CR=[5—40])

Road topology
(Straight ,
CR=[5—40])

Road topology
(CR=[5—40])

^

^

^

^

^Road topology
(Straight ,CR=[5—40],
RH=[4—12])

^ Road topology
(Straight ,
CR=[5—40])

Road topology
(CR=[5—40])

^

Road topology
(CR=[5—40])

^

Outputs of Our Approach
• Failure Detection

• (Search + Classification) generates 78% more distinct, critical
test scenarios compared to a baseline search algorithm

• Failure Explanation

• A characterization of the input space showing under what input
conditions the system is likely to fail

• Visualized by diagrams or regression trees
35

Failure Explanation

36

50m

76m

36m32m

θ
[15m-40m] pedestrian

speed < 6km/h

vehicle
speed > 36km/h

{ {
road sidewalk

Usefulness

The characterizations of the different critical regions can

help with:

(1) Debugging the system or the simulator

(2) Identifying hardware changes to increase ADAS

safety

(3) Identifying proper warnings to drivers

37

Other Project Examples

38

Automotive Systems

• Testing controller implemented in Simulink

• Analysis of CPU time usage in ECU software

• Fault localisation in Simulink models

39

Model Testing Satellite Systems
• Control system

• MiL/SiL testing

• Data communication system

• Test case prioritization
for HiL

40

Conclusions

Model Testing

42

Do we find an error by
testing models?

Requirements

OracleModels

Design

- Search
- Prediction models
- Classification models

Model Checking

43

Do models satisfy
formal properties?

Requirements

Formal PropertiesModels

Design

- Symbolic techniques
- Exhaustive search via
SAT/SMT solvers

Related Work: Model Checking
• Incompatibility issues with CPS models

• Continuous mathematical models, e.g., differential
equations

• Library functions in binary code

• Non-linear behavior

• Complex mathematical operators

• Saturation of actuators and sensors

• Reliance on measured data
44

Related Work: Model Checking

• Unrealistic assumptions about CPS test oracles

• Discrete/exact/complete/binary/automatable

• Focus on structural coverage

• Scalability

45

Search-Based Solutions
• Are Versatile

• Decrease modeling requirements

• Relax assumptions on test oracles

• Are scalable, e.g., easy to parallelize

• Can be combined with: Machine learning; Statistics; Solvers, e.g.,
SMT, CP

• But,

• are context-dependent

• require massive empirical studies

46

Future Work
• Model testing solutions in other CPS contexts

• Heterogeneous modeling and co-simulation

• Modeling dynamic properties and risk

• Uncertainty modeling enabling probabilistic test oracles

• Executable model at a proper level of precision for testing
purposes

• Systematic ways to build fitness functions for oracles

47

References
• Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter, “Testing Vision-Based

Control Systems Using Learnable Evolutionary Algorithms”, To appear in ICSE 2018

• Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter, “Testing Advanced Driver
Assistance Systems Using Multi-Objective Search and Neural Networks”, ASE 2016

• Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, “Automated Test Suite
Generation for Time-continuous Simulink Models’’, ICSE 2016

• Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, “Effective Test Suites for
Mixed Discrete-Continuous Stateflow Controllers”, ACM ESEC/FSE 2015 (Distinguished paper
award)

• Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, “MiL Testing of Highly
Configurable Continuous Controllers: Scalable Search Using Surrogate Models”, IEEE/ACM ASE
2014 (Distinguished paper award)

• Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, Claude Poull, “Search-
Based Automated Testing of Continuous Controllers: Framework, Tool Support, and Case
Studies”, Information and Software Technology, Elsevier (2014)

48

.lu
software verification & validation
VVS

Automated Testing of Cyber-
Physical Systems

Shiva Nejati
SnT Centre/University of Luxembourg

Huawei Workshop on Applications of AI to
Software Engineering

December 15, 2017

Results
• The test scenarios by our search-based approach helped

engineers identify several critical behaviors

• The critical test scenarios are available at:

https://sites.google.com/site/testingpevi

• Under tight time budget, our search algorithm with surrogate
models is more accurate and safer compared to the baseline
search algorithm

• Our classification guided search generates 78% more distinct,
critical test scenarios compared to the baseline search algorithm

50

Part II. Model Testing Satellite
Systems

55

Synthesizer
Spectrum analyzer

Power meter

Other instruments Ground station

Satellite

IOT system

Test Case Prioritization (HiL)

• Problem

• Test case prioritization

• Context

• System validation and acceptance
testing of CPS

56

Search space: exponential growth
E.g., two test cases: a, b
Possible test suites: (a), (b), (a,b), (b,a)

Black box testing

Results – Worst Runs

57

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(a) Comparing HV values obtained
by NSGAII and NSGAII-SM

NSGAII (mean)
NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)
50 100 15010

(b) Comparing HV values obtained
by RS and NSGAII-SM

HV

RS (mean)
NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(c) HV values for worst runs of NSGAII,
NSGAII-SM and RS

RS

NSGAII-SM
NSGAII

