

Automated Testing of Cyber-Physical Systems Shiva Nejati SnT Centre/University of Luxembourg

Huawei Workshop

December 15, 2017

Acknowledgements

- Lionel Briand
- Raja Ben Abdessalem
- Reza Matinnejad
- Industry partners: IEE, SES and Delphi

Raja

Lionel

Reza

Cyber Physical Systems

Model-Based Development

CPS Model-Based Development

Model in the Loop

MiL

Function modeling (Matlab/Simulink)

- Controller
- Plant/Environment

Software in the Loop Hardware in the Loop HiL

Architecture modeling (C-Code/SysML)

- Real-time analysis
- Integration

Deployment (embedded-C)

• Testing (Expensive)

Model Testing

Fundamental Questions

- What are the useful and realistic models of CPSs?
- How to specify test oracles to enable effective testing of system requirements and design?
- How to design scalable testing techniques?
 - Test case generation
 - Test case selection
 - Fault localization

CPS Models

- have dynamic behaviors
- are executable
- are hybrid capture both discrete (algorithms) and continuous (physical dynamics) computations
- exhibit uncertainty e.g., about the environment

Closed Loop Controllers

Controllers + Plants

Autonomous Controllers

CPS Test Oracles

- System outputs are signals
 - Engineers inspect changes in outputs over continuous time periods
- Test oracles
 - may be heuristic or partial
 - are often quantitative and not binary
 - might be effort-intensive or difficult to automate

Anti Patterns– Partial Oracles

Instability

Growth to infinity

• Discontinuity

Application Specific Oracles

• A reference signal + error margin Power level

• (Sequences of) Signal features

 Temporal properties: "The system response should occur within 32ms"

CPS Testing Challenges

- Test input space is large and multi-dimensional
- Model executions are time consuming
- Fault localization is difficult
- Limited time budget for testing
 - Test oracles are expensive
 - Running the test cases on HiL is expensive

Our Solutions

Challenges	Our solution
Test input space is large	Metaheuristic search to identify worst case/critical behaviors
Simulation takes time	Surrogate models to predict the simulation outcome without running simulations
Fault localization is difficult	Classification techniques to explain system failures
Expensive HiL Testing	Test case prioritization using multi- objective search

Example Projects

Testing Advanced Driver Assistance Systems

Advanced Driver Assistance Systems (ADAS)

Decisions are made over time based on sensor data

Testing Advanced Driver Assistance Systems (self-driving cars)

Models -- A simulator based on Physical/Mathematical models

Oracles -- description of crashes

- Test generation based on meta-heuristic search
- Surrogate modeling to speed up search
- Classification to help with fault localization

Automated Emergency Braking System (AEB)

Physics-Based Simulations

AEB Critical Behavior -- Oracle

Example:

CB: "AEB <u>detects a pedestrian in front of the car</u> with <u>a high degree</u> <u>of certainty</u>, but an accident happens where <u>the car hits the</u> <u>pedestrian with a relatively high speed</u>"

Input/Output Specification

Static inputs Dynamic inputs Outputs

Generating Critical Test Scenarios via Metaheuristic Search

Black-Box Search-based Testing

Input data ranges/dependencies + Simulator + Fitness functions defined based on Oracles

An example critical scenario

Improving Search Time Performance via Surrogate (Prediction) Models

Improving Time Performance

- Individual simulations take on average around 1min
- It takes 8 hours to run our search-based test generation (≈ 500 simulations)
- →We use surrogate modeling to improve the search
 - Goal: Predict fitness based on dynamic variables
 - Neural networks

Surrogate Modeling

Input data ranges/dependencies + Simulator + Fitness functions defined based on Oracles

Results – Surrogate Modeling

Guiding Search via Classification Models

Search Guided by Classification

Input data ranges/dependencies + Simulator + Fitness functions defined based on Oracles

A characterization of critical input regions

Initial Classification Model

Refined Classification Model

Outputs of Our Approach

- Failure Detection
 - (Search + Classification) generates 78% more distinct, critical test scenarios compared to a baseline search algorithm

• Failure Explanation

- A characterization of the input space showing under what input conditions the system is likely to fail
- Visualized by diagrams or regression trees

Failure Explanation

Usefulness

The characterizations of the different critical regions can help with:

(1) Debugging the system or the simulator

(2) Identifying hardware changes to increase ADAS safety

(3) Identifying proper warnings to drivers

Other Project Examples

Automotive Systems

• Testing controller implemented in Simulink

Analysis of CPU time usage in ECU software

Fault localisation in Simulink models

Model Testing Satellite Systems

- Control system
 - MiL/SiL testing

Test case prioritization
for HiL

Conclusions

Related Work: Model Checking

- Incompatibility issues with CPS models
 - Continuous mathematical models, e.g., differential equations
 - Library functions in binary code
 - Non-linear behavior
 - Complex mathematical operators
 - Saturation of actuators and sensors
 - Reliance on measured data

Related Work: Model Checking

- Unrealistic assumptions about CPS test oracles
 - Discrete/exact/complete/binary/automatable
 - Focus on structural coverage

Scalability

Search-Based Solutions

- Are Versatile
 - Decrease modeling requirements
 - Relax assumptions on test oracles
- Are scalable, e.g., easy to parallelize
- Can be combined with: Machine learning; Statistics; Solvers, e.g., SMT, CP
- But,
 - are context-dependent
 - require massive empirical studies

Future Work

- Model testing solutions in other CPS contexts
 - Heterogeneous modeling and co-simulation
 - Modeling dynamic properties and risk
 - Uncertainty modeling enabling probabilistic test oracles
 - Executable model at a proper level of precision for testing purposes
 - Systematic ways to build fitness functions for oracles

References

- Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter, "Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms", To appear in ICSE 2018
- Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter, "Testing Advanced Driver Assistance Systems Using Multi-Objective Search and Neural Networks", ASE 2016
- Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, "Automated Test Suite Generation for Time-continuous Simulink Models", ICSE 2016
- Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, "Effective Test Suites for Mixed Discrete-Continuous Stateflow Controllers", ACM ESEC/FSE 2015 (Distinguished paper award)
- Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, "MiL Testing of Highly Configurable Continuous Controllers: Scalable Search Using Surrogate Models", IEEE/ACM ASE 2014 (Distinguished paper award)
- Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann, Claude Poull, "Search-Based Automated Testing of Continuous Controllers: Framework, Tool Support, and Case Studies", Information and Software Technology, Elsevier (2014)

Automated Testing of Cyber-Physical Systems Shiva Nejati SnT Centre/University of Luxembourg

Huawei Workshop on Applications of AI to Software Engineering

December 15, 2017

Results

- The test scenarios by our search-based approach helped engineers identify several critical behaviors
 - The critical test scenarios are available at:

https://sites.google.com/site/testingpevi

- Under tight time budget, our search algorithm with surrogate models is more accurate and safer compared to the baseline search algorithm
- Our classification guided search generates 78% more distinct, critical test scenarios compared to the baseline search algorithm

Part II. Model Testing Satellite Systems

Test Case Prioritization (HiL)

- Problem
 - Test case prioritization

Search space: exponential growth E.g., two test cases: a, b Possible test suites: (a), (b), (a,b), (b,a)

- Context
 - System validation and acceptance testing of CPS

Results – Worst Runs

