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About SnT
• ICT research centre to fuel the national innovation system 

• Part of the University of Luxembourg
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40+ industry
partners

20 MEUR turnover
(70% external funding)

Acquired competitive 
funding since launch

>100
M€

60% of PhDs and RAs 
work on industry projects >300 employees 51 nationalities



Software Verification and 
Validation Group (http://svv.lu)
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• Established in 2012

• Requirements Engineering, Security Analysis, 
Design Verification, Automated Testing, 
Runtime Monitoring

• 5 faculty members
(head: Lionel Briand)

• 11 research associates

• 13 PhD candidates

• 3 research fellows

• 10 current industry partnerships

• Budget 2018: ~2 M€

http://svv.lu


SVV Industry Partners

!4

SES and LuxSpace (Satellites)

Delphi and IEE (Automotive)

Government of Luxembourg

HITEC (Emergency systems)

BGL – BNP Paribas, 
Clearstream (Banking)

Escent (MDE Coaching) 

QRA (Quality Assurance)
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Mode of Collaboration
• Research driven by industry needs 

• Realistic evaluations  

• Combining research with innovation and technology transfer
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Adapted from [Gorschek et al. 2006]
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Cyber Physical Systems (CPS)
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CPS Challenge
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Computing Physical 
Dynamics 



Model-based Development of CPS
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Integration of 
SW and HW 

Model in the Loop 
(MiL)

Software in the Loop 
(SiL)

Hardware in the Loop 
(HiL)

Function  
Modeling

Software  
Modeling/ 

Development



Function Models

• are hybrid – capture both 
discrete (algorithms) and 
continuous (physical 
dynamics) computations 

• are executable  

• capture uncertainty e.g., 
about the environment
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ModelSignal Signal
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Software Models 

• capture software architecture and  
real-time constraints 

• specify performance, security  
and timing requirements 

• are in charge of  integrating  
different components 

• are heterogeneous
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Software Model

Benefits of CPS Modelling
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Fundamental Questions
• What are the useful and realistic models of CPS? 

• What requirements should CPS satisfy to meet their safety 
standards? 

• What are the main challenges in developing scalable and 
effective testing techniques for CPS?
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Simple Controller
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Controller Actuator
Commands

Electronic dryer controller

Plant



Adaptive Controller
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Controller Actuator
Commands

Sensors Plant
feedback

Cruise control system, Satellite controller



Autonomous Controller
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Controller Actuator
Commands

Sensors Plant
feedback

Perception & 
Decision

Sensors/ 
Camera Environment

Automated Driving, Unmanned Aerial Vehicle, Smart IoT



Temporal/Real Time 
Requirements

• ``As soon as braking is requested, the contact between 
Caliper and Disk shall occur within 20ms’’  

• ``The system shall respond within 32ms’’
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Controller Requirements 

• Stability 

• Smoothness
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Stability  
Violation 

Stability  
Violation 

Responsiveness 
Violation 



Autonomous Systems 
• Perception and decision requirements 

• ``The car shall detect all obstacles ahead 
of the vehicle within 100m distance.’’ 

• ``An unintended braking manouvre by 
the Automated Emergency Braking shall 
be prevented.’’ 

• Behavioral Safety 

• Driving Behavior Comfort 

• Energy Efficiency  

• ….
!19

Stopping	sight	distancr	

Percep1on	distance	



CPS Verification Challenge

• Analytical techniques and exact solvers cannot be applied to  
CPS models due to  

• non-linear, non-algebraic computations 

• continuous dynamic behaviours 

• heterogeneity 
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CPS test input spaces are large and multi-dimensional  

commands

commands + 
plant states sensor data  

over times

plant states + 
environment

On/Off

On/Off



Metaheuristic Search

• Stochastic optimisation, e.g., evolutionary computing 

• Efficiently explore the search space in order to find good (near 
optimal) feasible solutions 

• Applicable to any search space irrespective of the size 

• Flexible and can be combined with different optimisation methods 

• Amenable to analysis of heterogeneous models 

• Applicable to many practical situations, including SW testing
!22



Our Approach in a Nutshell 
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Test Input  
Generation

Guided  
Search

Optimisations  
via Machine Learning



Structured Test Inputs
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Genetic Algorithms
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Search algorithms inspired by the theory of evolution
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Initial test inputs

Fitness computation (which test 
is more likely to reveal faults?) 

Select the most critical tests (the ones 
more likely to reveal faults)

Bread (generate new tests using 
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Why Do We Need Additional 
Optimizations?

• Few objective function evaluations are possible because 
executing/simulating CPS function models is expensive  

• They should be executed for a long enough time duration 

• They capture, in addition to software/controllers, models of 
hardware and environment   

• Several local-optima  

• Large and multi-dimensional search input spaces
!26



Machine Learning and Search
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Find critical test inputs  
in the entire search space 

- Learning where the most critical 
regions are 

- Learning fitter solutions instead of 
breading them 

- Predicting fitness values instead of 
computing them 

- Selecting effective search algorithms 
and tuning their parameters 

- …

Search
Machine
Learning



Industrial Research Projects



Testing Automated Driving 
Systems



Autonomous Car Features
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Automated Emergency Breaking 
(AEB)

Traffic Sign Recognition 
(TSR)
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-  Braking



Testing Models of Automated 
Driving Systems
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Testing Models of Automated 
Driving Systems
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Physics-based 
Simulators 

SUT
Sensor/
Camera

Data

Autonomous
Feature

Actuator 
Command

Time Stamped Vectors

We use PreScan, a 
commercial physics-

base simulator



Test Inputs/Outputs
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- intensity: Real
SceneLight

Dynamic
Object

1
- weatherType: 
Condition

Weather
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- normal

«enumeration»
Condition

- field of view: 
Real

Camera 
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RoadSide 
Object

- roadType: RT
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1 - curved
- straight
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- θ: Real
- v0: Real

Pedestrian
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Position

1

*

1

*

1
1

- state: Boolean
Collision

Parked 
Cars

Trees
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Real
- timeStep: Real

Test Scenario

AEB

- certainty: Real
Detection

1
1

11

1
1

1
1

«positioned»

«uses»
1 1

- AWA

Output 
Trajectory

Environment inputs
Mobile object inputs
Outputs



System Safety Requirements

• Req1: “Automated Emergency Braking (AEB) shall detect 
pedestrians in front of the car and stop the car when there is 
a risk of collision”  

• Req2: “An unintended manoeuvre by AEB shall be prevented” 

• Fitness functions estimate how close AEB is into violating its 
requirements (e.g., by having a collision)

!34



Guided Test Generation
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Test Input  
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• Select best tests 
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test 
• Compute fitness functions

Fitness  
values

Tests revealing  
requirements violations  

But, simulations are 
expensive to run!

Test input generation 
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Surrogate Models

• It takes 8 hours to run our search-based test generation (≈500 
simulations) 

➡We use surrogate models  developed based on machine 
learning to reduce the number of fitness computations 

• We first train a model based on a large number of simulations 

• We use this model during the search to predict fitnesses 
instead of actually computing them, but …
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Guided Test Generation
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Test Generation with Surrogates
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Test Input  
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• Select best tests 
• Generate new tests (Genetic Operators)

• Predict the fitness and the error (surrogate) 
• If the test is likely to be selected  

• Simulate the test 
• Compute the fitness
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values

Tests revealing  
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Comparing Search w/ and w/o 
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Guided Test Generation

!42

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input  
Characterisation

• Select best tests 
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test 
• Compute fitness values

Fitnesses  

Tests revealing  
requirements violations  

Test input generation 

Evaluating test inputs



Test Generation Guided by 
Classification
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• Build a classification tree 
• Select/generate tests in the fittest regions
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Test Input  
Characterisation

• Simulate every (candidate) test 
• Compute fitness values

Fitnesses  

Tests revealing requirements violations  + 
Failure Explanations
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Genetic Evolution Guided by 
Classification
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1. Initial Inputs
2. Fitness Computation 
3. Classification
4. Selection
5. Breeding

Fitnesses:  
F1. Min distance between pedestrian and 
the car 
F2. Speed of the car at the time of collision 



Genetic Evolution Guided by 
Classification
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1. Initial Inputs
2. Fitness Computation 
3. Classification
4. Selection
5. Breeding

Label: 
(F1 < threshold1)     (F2 > threshold2)
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Failure Explanation
• A characterisation of the input 

space showing under what 
conditions the system is likely to fail  

• Path conditions in the decision tree 

• Visualized by decision trees or 
dedicated diagrams
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Results
• Does the decision tree technique help guide the evolutionary 

search and make it more effective? 

• Search with decision tree classifications can find  78% more 
distinct, critical test scenarios compared to a baseline search 
algorithm 

• Does our approach help characterize and converge towards 
homogeneous critical regions? 

• The generated critical regions consistently become smaller, 
more homogeneous and more precise over successive tree 
generations
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Usefulness

• The characterisations of the different critical regions can help 
with:  

(1) Debugging the system or the simulator 

(2) Identifying hardware changes to increase ADAS safety  

(3) Identifying proper warnings to drivers 

!47
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Using search-based testing to detect 
undesired feature interactions among 

function models of self-driving systems
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Our Fitness Function

• A combination of three heuristics 

• Coverage-based 

• Failure-based 

• Unsafe overriding

!50



Coverage-based Objective
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Goal: Exercising as many decision rules as possible

F1

F2

Fn

…


Decision 
Logic

SUT

if (condition)

F1



Failure-based Test Objective
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Goal: Revealing violations of system-level requirements

Example:
-  Req: No collision between pedestrians "

and cars
-  Generating test cases that minimize"

the distance between the car and the "
pedestrian

F1

F2

Fn

…


Decision 
Logic 

SUT
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Goal: Finding failures that are more likely to be due to faults in the 
integration component rather than faults in the features
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Feature Interaction Test Objective
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Goal: Finding failures that are more likely to be due to faults in the 
integration component rather than faults in the features

Braking-F1
0 .3 .3 .6 .8 1 1

Braking - Final

F1F1 F2 F2F3F3 F1
0 .3 .2 .2 .3 .3 1

Reward failures that could have been avoided if another feature had 
been prioritised by the decision rules

F1

F2

Fn

…


Decision 
Logic 

SUT
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On Hybrid Fitness Function
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One hybrid test objective          for every rule j and every requirement l⌦j,l

if (cnd)

F

⌦j,l(tc) > 2 tc does not cover Branch j 

2 � ⌦j,l(tc) > 1 tc covers branch j  but F is not 
unsafely overriden

1 � ⌦j,l(tc) > 0
tc covers branch j  and F is 
unsafely overriden but req l is 
not violated

⌦j,l(tc) = 0 A feature interaction failure is likely detected



Search Algorithm
• Goal: Computing a test suite that covers all the test objectives 

• Challenges:  

• The number of test objectives is large: 

• Computing test objectives is computationally expensive 

• Not a Pareto front optimization problem 

• Objectives compete with each others, e.g., cannot have, in a single test 
scenario, a car that violates the speed limit after hitting the leading car 

!55

 # of requirements × # of rules 



MOSA: Many-Objective Search-
based Test Generation
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Objective 1

Objective 2

Not all (non-dominated) solutions
are optimal for the purpose of testing

Panichella et. al.
[ICST 2015]



MOSA: Many-Objective Search-
based Test Generation
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Objective 1

Objective 2

Not all (non-dominated) solutions
are optimal for the purpose of testing

These points are 
better than others

Panichella et. al.
[ICST 2015]
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Hybrid test objectives 
reveal significantly more  
feature interaction 
failures (more than 
twice) compared to 
baseline alternatives



Feedback from Domain Experts

• The failures we found were due to undesired feature 
interactions  

• The failures were not previously known to them 

• We identified ways to improve the decision logic (integration 
component) to avoid failures
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Example Feature Interaction Failure



Luxembourg Emergency 
Management System

• Goal: Monitoring emergency 
situations and providing a robust 
communication platform for 
disaster situations 

• Requirements 

• Resilience 

• Maintaining an acceptable 
level of quality of service in the 
face of emergency situations
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Radiation



Concluding Remarks



Search-Based Testing 

• Versatile 

• Can be applied to complex systems (non-linear, non-algebraic, 
continuous, heterogeneous) 

• Can be used when systems have black box components or rely on 
computer simulations 

• Scalable, easy to parallelize  

• Can be combined with: Machine learning, Statistics, Solvers, e.g., SMT 
and CP  
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Conclusions

• Contextual factors influence both the significance of a problem and the shape 
of the solution 

• Our context: function models capturing CPS continuous dynamics, functional 
requirements and simulators capturing environment and hardware 

• Focus on system-level testing 

• Not just on the perception layer (DNN) or  the decision layer or the control 
layer 

• We have to deal with computational complexity, heterogeneity and very large 
input spaces
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We are hiring!  
Talk to me if you are interested in research positions in any of the 
following areas: Applied Machine Learning, Applied Natural Language 
Processing, Automated Verification and Validation, Information 
Retrieval, Model-driven Engineering, Program Analysis, Requirements 
Engineering, Software Security, Software Testing 


