
.lu
software verification & validation
VVS

Testing Cyber Physical Systems via
Evolutionary Algorithms and  

Machine Learning

Shiva Nejati
SnT, University of Luxembourg

SBST @ ICSE 2019
May 27, 2019

!1

About SnT
• ICT research centre to fuel the national innovation system

• Part of the University of Luxembourg

!2

40+ industry
partners

20 MEUR turnover
(70% external funding)

Acquired competitive
funding since launch

>100
M€

60% of PhDs and RAs
work on industry projects >300 employees 51 nationalities

Software Verification and
Validation Group (http://svv.lu)

!3

• Established in 2012

• Requirements Engineering, Security Analysis,
Design Verification, Automated Testing,
Runtime Monitoring

• 5 faculty members
(head: Lionel Briand)

• 11 research associates

• 13 PhD candidates

• 3 research fellows

• 10 current industry partnerships

• Budget 2018: ~2 M€

http://svv.lu

SVV Industry Partners

!4

SES and LuxSpace (Satellites)

Delphi and IEE (Automotive)

Government of Luxembourg

HITEC (Emergency systems)

BGL – BNP Paribas,
Clearstream (Banking)

Escent (MDE Coaching)

QRA (Quality Assurance)

SVV Industry Partners

!4

SES and LuxSpace (Satellites)

Delphi and IEE (Automotive)

Government of Luxembourg

HITEC (Emergency systems)

BGL – BNP Paribas,
Clearstream (Banking)

Escent (MDE Coaching)

QRA (Quality Assurance)

Mode of Collaboration
• Research driven by industry needs

• Realistic evaluations

• Combining research with innovation and technology transfer

!5

Adapted from [Gorschek et al. 2006]

Problem
Formulation

Problem
Identification

State of the
Art Review

Candidate
Solution(s)

Initial
Validation

Training

Realistic
Validation

Industry Partners

Research Groups

1

2

3

4

5

7

Solution
Release

8

6

Acknowledgements

!6

Raja
Ben Abdessalem

Reza
Matinnejad

Annibale
Panichella

Lionel
Briand

Cyber Physical Systems (CPS)

!7

Cyber Space

Physical
Sensing

Actuation
Information

Networks

Object
Domain

Real Space

CPS Challenge

!8

Computing Physical
Dynamics

Model-based Development of CPS

!9

Integration of
SW and HW

Model in the Loop
(MiL)

Software in the Loop
(SiL)

Hardware in the Loop
(HiL)

Function
Modeling

Software
Modeling/

Development

Function Models

• are hybrid – capture both
discrete (algorithms) and
continuous (physical
dynamics) computations

• are executable

• capture uncertainty e.g.,
about the environment

!10

ModelSignal Signal

ẋ(t) = ẋ(0) + 1
M

R t
0 F (⌧)d⌧

Hybrid Automaton

State space: Bm × Rn

Dynamics: initial condition + state transitions
+ differential equations

Thermostat:

x0

off

on
t

off
x’ = -K·x

on
x’ = K·(H-x)

x ≤ 19 x ≥ 21

x ≤ 23

x ≥ 17

Dynamic
System

Signal Signal

Software Models

• capture software architecture and  
real-time constraints

• specify performance, security  
and timing requirements

• are in charge of integrating  
different components

• are heterogeneous

!11

Software Model

Benefits of CPS Modelling

!12

Function Model
Simulation/
Prediction

Certification

Early Testing
VerificationAutomated Code

Generation
CPS Models

Software Model

Benefits of CPS Modelling

!12

Function Model
Simulation/
Prediction

Certification

Early Testing
VerificationAutomated Code

Generation
CPS Models

Fundamental Questions
• What are the useful and realistic models of CPS?

• What requirements should CPS satisfy to meet their safety
standards?

• What are the main challenges in developing scalable and
effective testing techniques for CPS?

!13

Simple Controller

!14

Controller Actuator
Commands

Electronic dryer controller

Plant

Adaptive Controller

!15

Controller Actuator
Commands

Sensors Plant
feedback

Cruise control system, Satellite controller

Autonomous Controller

!16

Controller Actuator
Commands

Sensors Plant
feedback

Perception &
Decision

Sensors/
Camera Environment

Automated Driving, Unmanned Aerial Vehicle, Smart IoT

Temporal/Real Time
Requirements

• ``As soon as braking is requested, the contact between
Caliper and Disk shall occur within 20ms’’

• ``The system shall respond within 32ms’’

!17

Controller Requirements

• Stability

• Smoothness

!18

Stability
Violation

Stability
Violation

Responsiveness
Violation

Autonomous Systems
• Perception and decision requirements

• ``The car shall detect all obstacles ahead
of the vehicle within 100m distance.’’

• ``An unintended braking manouvre by
the Automated Emergency Braking shall
be prevented.’’

• Behavioral Safety

• Driving Behavior Comfort

• Energy Efficiency

• ….
!19

Stopping	sight	distancr	

Percep1on	distance	

CPS Verification Challenge

• Analytical techniques and exact solvers cannot be applied to
CPS models due to

• non-linear, non-algebraic computations

• continuous dynamic behaviours

• heterogeneity

!20

CPS test input spaces are large and multi-dimensional

commands

commands +
plant states sensor data

over times

plant states +
environment

On/Off

On/Off

Metaheuristic Search

• Stochastic optimisation, e.g., evolutionary computing

• Efficiently explore the search space in order to find good (near
optimal) feasible solutions

• Applicable to any search space irrespective of the size

• Flexible and can be combined with different optimisation methods

• Amenable to analysis of heterogeneous models

• Applicable to many practical situations, including SW testing
!22

Our Approach in a Nutshell

!23

Test Input
Generation

Guided
Search

Optimisations
via Machine Learning

Structured Test Inputs

!24

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

• Domain models

• Vectors and constraints

Genetic Algorithms

!25

Search algorithms inspired by the theory of evolution

Genetic Algorithms

!25

Search algorithms inspired by the theory of evolution

Initial test inputs

Genetic Algorithms

!25

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test
is more likely to reveal faults?)

Genetic Algorithms

!25

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test
is more likely to reveal faults?)

Select the most critical tests (the ones
more likely to reveal faults)

Genetic Algorithms

!25

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test
is more likely to reveal faults?)

Select the most critical tests (the ones
more likely to reveal faults)

Bread (generate new tests using
Genetic operators)

Genetic Algorithms

!25

Search algorithms inspired by the theory of evolution

Initial test inputs

Fitness computation (which test
is more likely to reveal faults?)

Select the most critical tests (the ones
more likely to reveal faults)

Bread (generate new tests using
Genetic operators)

Why Do We Need Additional
Optimizations?

• Few objective function evaluations are possible because
executing/simulating CPS function models is expensive

• They should be executed for a long enough time duration

• They capture, in addition to software/controllers, models of
hardware and environment

• Several local-optima

• Large and multi-dimensional search input spaces
!26

Machine Learning and Search

!27

Find critical test inputs
in the entire search space

- Learning where the most critical
regions are

- Learning fitter solutions instead of
breading them

- Predicting fitness values instead of
computing them

- Selecting effective search algorithms
and tuning their parameters

- …

Search
Machine
Learning

Industrial Research Projects

Testing Automated Driving
Systems

Autonomous Car Features

!30

Automated Emergency Breaking
(AEB)

Traffic Sign Recognition
(TSR)

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command
-  Steering
-  Acceleration
-  Braking

Testing Models of Automated
Driving Systems

!32

Physics-based
Simulators

SUT
Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Testing Models of Automated
Driving Systems

!32

Physics-based
Simulators

SUT
Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Time Stamped Vectors

Testing Models of Automated
Driving Systems

!32

Physics-based
Simulators

SUT
Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Time Stamped Vectors

We use PreScan, a
commercial physics-

base simulator

Test Inputs/Outputs

!33

- intensity: Real
SceneLight

Dynamic
Object

1
- weatherType:
Condition

Weather

- fog
- rain
- snow
- normal

«enumeration»
Condition

- field of view:
Real

Camera
Sensor

RoadSide
Object

- roadType: RT
Road

1 - curved
- straight
- ramped

«enumeration»
RT

- v0: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- v0: Real

Pedestrian

- x: Real
- y: Real

Position

1

*

1

*

1
1

- state: Boolean
Collision

Parked
Cars

Trees
- simulationTime:
Real
- timeStep: Real

Test Scenario

AEB

- certainty: Real
Detection

1
1

11

1
1

1
1

«positioned»

«uses»
1 1

- AWA

Output
Trajectory

Environment inputs
Mobile object inputs
Outputs

System Safety Requirements

• Req1: “Automated Emergency Braking (AEB) shall detect
pedestrians in front of the car and stop the car when there is
a risk of collision”

• Req2: “An unintended manoeuvre by AEB shall be prevented”

• Fitness functions estimate how close AEB is into violating its
requirements (e.g., by having a collision)

!34

Guided Test Generation

!35

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Select best tests
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test
• Compute fitness functions

Fitness
values

Tests revealing
requirements violations

Test input generation

Evaluating test inputs

Guided Test Generation

!35

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Select best tests
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test
• Compute fitness functions

Fitness
values

Tests revealing
requirements violations

Test input generation

Evaluating test inputs

Guided Test Generation

!35

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Select best tests
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test
• Compute fitness functions

Fitness
values

Tests revealing
requirements violations

But, simulations are
expensive to run!

Test input generation

Evaluating test inputs

Surrogate Models

• It takes 8 hours to run our search-based test generation (≈500
simulations)

➡We use surrogate models developed based on machine
learning to reduce the number of fitness computations

• We first train a model based on a large number of simulations

• We use this model during the search to predict fitnesses
instead of actually computing them, but …

!36

Guided Test Generation

!37

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Select best tests
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test
• Compute fitness values

Fitnesses

Tests revealing
requirements violations

Test input generation

Evaluating test inputs

Test Generation with Surrogates

!38

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Select best tests
• Generate new tests (Genetic Operators)

• Predict the fitness and the error (surrogate)
• If the test is likely to be selected

• Simulate the test
• Compute the fitness

Fitness
values

Tests revealing
requirements violations

Archive (A)

New Population (P)

simulated
 not simulated

Archive (A)

New Population (P)

Simulate and
compute fitnesses F

 A + P

simulated
 not simulated

Archive (A)

New Population (P)

Simulate and
compute fitnesses F

 A + P

Rank
1

2 3

simulated
 not simulated

Archive (A)

New Population (P)

Simulate and
compute fitnesses F

 A + P

Rank
1

2 3

Select

simulated
 not simulated

A

P

simulated
 not simulated

A

P Predict
fitnesses

 A + P

simulated
 not simulated

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Pessimistic
Rank

Optimistic
Rank 1 2 3

1 2 3

̂F − error

̂F + error

A

P Predict
fitnesses

 A + P

simulated
 not simulated

Predicted values are only used to bypass simulations for unfit individuals

Selected
Archive

1. Select best simulated elements from Optimistic
Rank

2. Select best not-simulated elements from Pessimistic
Rank, simulate them and compute their fitnesses

3. Re-rank and re-iterate

̂F ± error

Comparing Search w/ and w/o
Surrogate

!41

0.00

0.25

0.50

0.75

1.00

Time (min)

H
yp

er
vo

lu
m

e

50 100 15010

NSGA2 (mean)
NSGA2-SM (mean)

Search with
surrogate models
generates higher
quality solutions
than search
without surrogate
models

Comparing Search w/ and w/o
Surrogate

!41

0.00

0.25

0.50

0.75

1.00

Time (min)

H
yp

er
vo

lu
m

e

50 100 15010

NSGA2 (mean)
NSGA2-SM (mean)

Search with
surrogate models
generates higher
quality solutions
than search
without surrogate
models

A worst case scenario example

Guided Test Generation

!42

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Select best tests
• Generate new tests (Genetic Operators)

• Simulate every (candidate) test
• Compute fitness values

Fitnesses

Tests revealing
requirements violations

Test input generation

Evaluating test inputs

Test Generation Guided by
Classification

!43

• Build a classification tree
• Select/generate tests in the fittest regions

xe
0 xl

0xp
0

y0, y
0
0

✓p

xts

~vp0

~v0 ~v0

yp0

Y

X

Test Input
Characterisation

• Simulate every (candidate) test
• Compute fitness values

Fitnesses

Tests revealing requirements violations +
Failure Explanations

Genetic Evolution Guided by
Classification

!44

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Genetic Evolution Guided by
Classification

!44

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Genetic Evolution Guided by
Classification

!44

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Fitnesses:
F1. Min distance between pedestrian and
the car
F2. Speed of the car at the time of collision

Genetic Evolution Guided by
Classification

!44

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Label:
(F1 < threshold1) (F2 > threshold2)

<̂latexit sha1_base64="fN2vLjkdGPW+23P0LWTflayq2iM=">AAAB73icbVDLTgJBEOzFF+IL9ehlIph4Irt40CPRi0dM5JHAhszO9sKE2Yczsxqy4Se8eNAYr/6ON//GAfagYCWdVKq6093lJYIrbdvfVmFtfWNzq7hd2tnd2z8oHx61VZxKhi0Wi1h2PapQ8AhbmmuB3UQiDT2BHW98M/M7jygVj6N7PUnQDekw4gFnVBupW+0/oT/E6qBcsWv2HGSVODmpQI7moPzV92OWhhhpJqhSPcdOtJtRqTkTOC31U4UJZWM6xJ6hEQ1Rudn83ik5M4pPgliaijSZq78nMhoqNQk90xlSPVLL3kz8z+ulOrhyMx4lqcaILRYFqSA6JrPnic8lMi0mhlAmubmVsBGVlGkTUcmE4Cy/vEra9ZpzUavf1SuN6zyOIpzAKZyDA5fQgFtoQgsYCHiGV3izHqwX6936WLQWrHzmGP7A+vwBT+KPfA==</latexit>

Genetic Evolution Guided by
Classification

!44

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Label:
(F1 < threshold1) (F2 > threshold2)

<̂latexit sha1_base64="fN2vLjkdGPW+23P0LWTflayq2iM=">AAAB73icbVDLTgJBEOzFF+IL9ehlIph4Irt40CPRi0dM5JHAhszO9sKE2Yczsxqy4Se8eNAYr/6ON//GAfagYCWdVKq6093lJYIrbdvfVmFtfWNzq7hd2tnd2z8oHx61VZxKhi0Wi1h2PapQ8AhbmmuB3UQiDT2BHW98M/M7jygVj6N7PUnQDekw4gFnVBupW+0/oT/E6qBcsWv2HGSVODmpQI7moPzV92OWhhhpJqhSPcdOtJtRqTkTOC31U4UJZWM6xJ6hEQ1Rudn83ik5M4pPgliaijSZq78nMhoqNQk90xlSPVLL3kz8z+ulOrhyMx4lqcaILRYFqSA6JrPnic8lMi0mhlAmubmVsBGVlGkTUcmE4Cy/vEra9ZpzUavf1SuN6zyOIpzAKZyDA5fQgFtoQgsYCHiGV3izHqwX6936WLQWrHzmGP7A+vwBT+KPfA==</latexit>

Genetic Evolution Guided by
Classification

!44

1. Initial Inputs
2. Fitness Computation
3. Classification
4. Selection
5. Breeding

Failure Explanation
• A characterisation of the input

space showing under what
conditions the system is likely to fail

• Path conditions in the decision tree

• Visualized by decision trees or
dedicated diagrams

!45

radius in
[15m..40m]

30m22m

10m

26m

vehicle speed > 36 km/h

pedestrian speed
> 6 km/h

road sidewalk

θ

curved road

Results
• Does the decision tree technique help guide the evolutionary

search and make it more effective?

• Search with decision tree classifications can find 78% more
distinct, critical test scenarios compared to a baseline search
algorithm

• Does our approach help characterize and converge towards
homogeneous critical regions?

• The generated critical regions consistently become smaller,
more homogeneous and more precise over successive tree
generations

!46

Usefulness

• The characterisations of the different critical regions can help
with:

(1) Debugging the system or the simulator

(2) Identifying hardware changes to increase ADAS safety

(3) Identifying proper warnings to drivers

!47

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

…
…

-  Steering
-  Acceleration
-  Braking

Actuator Commands:

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

…
…

-  Steering
-  Acceleration
-  Braking

Actuator Commands:

Conflicts

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

…
…

-  Steering
-  Acceleration
-  Braking

Actuator Commands:

Feature Interaction Problem

Conflicts

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

Sensor/
Camera

Data

Autonomous
Feature

Actuator
Command

…
…

-  Steering
-  Acceleration
-  Braking

Actuator Commands:

Undesired Feature Interactions

Conflicts

Using search-based testing to detect
undesired feature interactions among

function models of self-driving systems

!49

Our Fitness Function

• A combination of three heuristics

• Coverage-based

• Failure-based

• Unsafe overriding

!50

Coverage-based Objective

!51

Goal: Exercising as many decision rules as possible

F1

F2

Fn

…

Decision
Logic

SUT

if (condition)

F1

Failure-based Test Objective

!52

Goal: Revealing violations of system-level requirements

Example:
-  Req: No collision between pedestrians "

and cars
-  Generating test cases that minimize"

the distance between the car and the "
pedestrian

F1

F2

Fn

…

Decision
Logic

SUT

Feature Interaction Test Objective

!53

Goal: Finding failures that are more likely to be due to faults in the
integration component rather than faults in the features

F1

F2

Fn

…

Decision
Logic

SUT

Feature Interaction Test Objective

!53

Goal: Finding failures that are more likely to be due to faults in the
integration component rather than faults in the features

Braking-F1
0 .3 .3 .6 .8 1 1

Braking - Final

F1F1 F2 F2F3F3 F1
0 .3 .2 .2 .3 .3 1

F1

F2

Fn

…

Decision
Logic

SUT

Feature Interaction Test Objective

!53

Goal: Finding failures that are more likely to be due to faults in the
integration component rather than faults in the features

Braking-F1
0 .3 .3 .6 .8 1 1

Braking - Final

F1F1 F2 F2F3F3 F1
0 .3 .2 .2 .3 .3 1

F1

F2

Fn

…

Decision
Logic

SUT

Feature Interaction Test Objective

!53

Goal: Finding failures that are more likely to be due to faults in the
integration component rather than faults in the features

Braking-F1
0 .3 .3 .6 .8 1 1

Braking - Final

F1F1 F2 F2F3F3 F1
0 .3 .2 .2 .3 .3 1

F1

F2

Fn

…

Decision
Logic

SUT

Feature Interaction Test Objective

!53

Goal: Finding failures that are more likely to be due to faults in the
integration component rather than faults in the features

Braking-F1
0 .3 .3 .6 .8 1 1

Braking - Final

F1F1 F2 F2F3F3 F1
0 .3 .2 .2 .3 .3 1

Reward failures that could have been avoided if another feature had
been prioritised by the decision rules

F1

F2

Fn

…

Decision
Logic

SUT

On Hybrid Fitness Function

!54

One hybrid test objective for every rule j and every requirement l⌦j,l

if (cnd)

F

On Hybrid Fitness Function

!54

One hybrid test objective for every rule j and every requirement l⌦j,l

if (cnd)

F

⌦j,l(tc) > 2 tc does not cover Branch j

On Hybrid Fitness Function

!54

One hybrid test objective for every rule j and every requirement l⌦j,l

if (cnd)

F

⌦j,l(tc) > 2 tc does not cover Branch j

2 � ⌦j,l(tc) > 1 tc covers branch j but F is not
unsafely overriden

On Hybrid Fitness Function

!54

One hybrid test objective for every rule j and every requirement l⌦j,l

if (cnd)

F

⌦j,l(tc) > 2 tc does not cover Branch j

2 � ⌦j,l(tc) > 1 tc covers branch j but F is not
unsafely overriden

1 � ⌦j,l(tc) > 0
tc covers branch j and F is
unsafely overriden but req l is
not violated

On Hybrid Fitness Function

!54

One hybrid test objective for every rule j and every requirement l⌦j,l

if (cnd)

F

⌦j,l(tc) > 2 tc does not cover Branch j

2 � ⌦j,l(tc) > 1 tc covers branch j but F is not
unsafely overriden

1 � ⌦j,l(tc) > 0
tc covers branch j and F is
unsafely overriden but req l is
not violated

⌦j,l(tc) = 0 A feature interaction failure is likely detected

Search Algorithm
• Goal: Computing a test suite that covers all the test objectives

• Challenges:

• The number of test objectives is large:

• Computing test objectives is computationally expensive

• Not a Pareto front optimization problem

• Objectives compete with each others, e.g., cannot have, in a single test
scenario, a car that violates the speed limit after hitting the leading car

!55

 # of requirements × # of rules

MOSA: Many-Objective Search-
based Test Generation

!56

Objective 1

Objective 2

Not all (non-dominated) solutions
are optimal for the purpose of testing

Panichella et. al.
[ICST 2015]

MOSA: Many-Objective Search-
based Test Generation

!56

Objective 1

Objective 2

Not all (non-dominated) solutions
are optimal for the purpose of testing

These points are
better than others

Panichella et. al.
[ICST 2015]

4 80 2 6 10 12
Time (h)

(a) SafeDrive1
N

um
be

r o
f f

ea
tu

re
 in

te
ra

ct
io

n
fa

ilu
re

s

0

2

8

10

4

6

(b) SafeDrive2

0

2

8

10

4

6

Hybrid (mean)

Fail (mean)
Cov (mean)
Hybrid
Coverage-based
Failure-based

4 80 2 6 10 12
Time (h)

(a) SafeDrive1
N

um
be

r o
f f

ea
tu

re
 in

te
ra

ct
io

n
fa

ilu
re

s

0

2

8

10

4

6

(b) SafeDrive2

0

2

8

10

4

6

Hybrid (mean)

Fail (mean)
Cov (mean)
Hybrid
Coverage-based
Failure-based

Hybrid test objectives
reveal significantly more
feature interaction
failures (more than
twice) compared to
baseline alternatives

Feedback from Domain Experts

• The failures we found were due to undesired feature
interactions

• The failures were not previously known to them

• We identified ways to improve the decision logic (integration
component) to avoid failures

!58

Example Feature Interaction Failure

Luxembourg Emergency
Management System

• Goal: Monitoring emergency
situations and providing a robust
communication platform for
disaster situations

• Requirements

• Resilience

• Maintaining an acceptable
level of quality of service in the
face of emergency situations

!59

Radiation

Concluding Remarks

Search-Based Testing

• Versatile

• Can be applied to complex systems (non-linear, non-algebraic,
continuous, heterogeneous)

• Can be used when systems have black box components or rely on
computer simulations

• Scalable, easy to parallelize

• Can be combined with: Machine learning, Statistics, Solvers, e.g., SMT
and CP

!61

Conclusions

• Contextual factors influence both the significance of a problem and the shape
of the solution

• Our context: function models capturing CPS continuous dynamics, functional
requirements and simulators capturing environment and hardware

• Focus on system-level testing

• Not just on the perception layer (DNN) or the decision layer or the control
layer

• We have to deal with computational complexity, heterogeneity and very large
input spaces

!62

• Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter,``Testing vision-
based control systems using learnable evolutionary algorithms’’, ICSE 2018: 1016-1026

• Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, Thomas
Stifter, ``Testing autonomous cars for feature interaction failures using many-objective
search’’, ASE 2018: 143-154

• Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, Thomas Stifter, ``Testing advanced
driver assistance systems using multi-objective search and neural networks’’, ASE
2016: 63-74

• Annibale Panichella, Fitsum Meshesha Kifetew, Paolo Tonella, ``Reformulating Branch
Coverage as a Many-Objective Optimization Problem’’, ICST 2015: 1-10

• Nejati et al., “Evaluating Model Testing and Model Checking for Finding Requirements
Violations in Simulink Models”, arXiv:1905.03490, 2019

!63

We are hiring!
Talk to me if you are interested in research positions in any of the
following areas: Applied Machine Learning, Applied Natural Language
Processing, Automated Verification and Validation, Information
Retrieval, Model-driven Engineering, Program Analysis, Requirements
Engineering, Software Security, Software Testing

